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Abstract 10 

Catchment-scale hydrological models are widely used to represent and improve our understanding of 

hydrological processes, and to support operational water resources management. Conceptual models, 

where catchment dynamics are approximated using relatively simple storage and routing elements, offer 

an attractive compromise in terms of predictive accuracy, computational demands and amenability to 

interpretation. This paper introduces SuperflexPy, an open-source Python framework implementing the 15 

SUPERFLEX principles (Fenicia et al., 2011) for building conceptual hydrological models from generic 

components, with a high degree of control over all aspects of model specification. SuperflexPy can be 

used to build models of a wide range of spatial complexity, ranging from simple lumped models (e.g. a 

reservoir) to spatially distributed configurations (e.g. nested sub-catchments), with the ability to 

customize all individual model elements. SuperflexPy is a Python package, enabling modelers to exploit 20 

the full potential of the framework without the need for separate software installations, and making it 

easier to use and interface with existing Python code for model deployment. This paper presents the 

general architecture of SuperflexPy, and illustrates its usage to build conceptual models of varying 

degrees of complexity. The illustration includes the usage of existing SuperflexPy model elements, as 

well as their extension to implement new functionality. SuperflexPy is available as open-source code, and 25 

can be used by the hydrological community to investigate improved process representations, for model 

comparison, and for operational work. A comprehensive documentation is available online and provided 

as supplementary material to this paper. 
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1 Introduction 

1.1 Conceptual hydrological models 

Catchment-scale hydrological models are widely used to predict catchment behavior under natural and 

human-impacted conditions, as well as to represent and improve our understanding of internal catchment 70 

functioning (e.g. Beven, 1989). For example, catchment models underlie projections of climate change 

impact on groundwater recharge and streamflow (e.g., Eckhardt and Ulbrich, 2003), are used as tools for 

hypothesis testing to identify dominant hydrological processes (e.g., Clark et al., 2011b;Hrachowitz et al., 

2014;Wrede et al., 2015), and are used to inform agricultural practices such as irrigation scheduling (e.g., 

McInerney et al., 2018) and pesticide application (e.g., Moser et al., 2018;Ammann et al., 2020). The 75 

typical use of hydrological models is to simulate or forecast the streamflow response (runoff) of a 

catchment to rainfall; for this reason they are often referred to as rainfall-runoff (RR) models (e.g., 

Moradkhani and Sorooshian, 2009). However, their application extends to the simulation of other 

environmental variables, including internal catchment variables such as groundwater levels (e.g., Seibert 

and McDonnell, 2002) and soil moisture (e.g., Matgen et al., 2012), as well as water chemistry (e.g., 80 

Bertuzzo et al., 2013;Ammann et al., 2020) 

An important class of catchment models are “process based” models, which describe the cascade of 

processes transforming catchment inputs (e.g. precipitation) into outputs (e.g. streamflow) though 

conservation equations. These models are an appealing choice due to their broad physical underpinnings, 

as well as their ability to represent internal catchment processes and potential for predicting catchment 85 

responses under changing environmental conditions. Process based models can be classified according to 

the nature of their constitutive equations (e.g. conceptual or physically based) and their spatial resolution 

(e.g. lumped or distributed) (e.g., Refsgaard, 1996). 

Conceptual models, where catchment dynamics are approximated using relatively simple storage and 

routing elements (e.g. Fenicia et al., 2011), are popular in practice because they offer an attractive 90 

compromise in terms of predictive accuracy, computational demands, and amenability to interpretation. 

Popular conceptual models include TopModel (Beven and Kirkby, 1979), HBV (Lindstrom et al., 1997), 

GR4J (Perrin et al., 2003), and HyMod (Boyle, 2001).  

In terms of spatial resolution, conceptual models can be applied in a lumped configuration (treating the 

entire catchment as a single unit) if the interest is in modeling integrated catchment outputs (e.g. 95 

streamflow). Alternatively, distributed configurations can be used when the interest is in modeling 

hydrological behavior at individual landscape sections (e.g., sub-catchments). In such distributed setups, 

the catchment is subdivided into spatial elements such as sub-catchments (e.g., Feyen et al., 2008;Lerat 

et al., 2012), Hydrological Response Units (HRUs) (e.g., Arnold et al., 1998;Fenicia et al., 2016;Dal 
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Molin et al., 2020b), or grids (e.g., Samaniego et al., 2010). A common strategy for developing distributed 100 

conceptual models is to represent individual landscape elements using independent (non-interacting) 

lumped models, and then obtain total catchment outflow by aggregating the outflows from these 

individual models, potentially incorporating flow routing elements to represent routing delays. This 

strategy is often referred to as “semi-distributed” modelling, and typically employs discretization based 

on principles of “hydrological similarity” (e.g., Sivapalan et al., 1987), such as HRUs (e.g., Leavesley, 105 

1984). In many cases, semi-distributed modelling achieves good predictive ability while greatly 

simplifying model representation and reducing computational demands compared to fully-integrated 

2D/3D distributed models such as Parflow (Maxwell, 2013) or Mike She (Refsgaard and Storm, 1995), 

which typically use much smaller landscape elements and explicitly model lateral exchanges. For the 

purposes of this presentation, we consider semi-distributed modelling to be a special case of distributed 110 

modelling. 

1.2 Hydrological model structure and flexible modeling frameworks 

The selection of model structure has preoccupied researchers and practitioners since the early days of 

hydrological modelling (e.g., Ibbitt and O’Donnell, 1971;Moore and Clarke, 1981;Jakeman and 

Hornberger, 1993). Although in principle the physical laws governing hydrological processes are the 115 

same everywhere, the diversity of catchment conditions in terms of topography, soil, geology, vegetation, 

and anthropogenic influence, results in remarkably different manifestations of these physical laws at the 

catchment scale. These local differences, also termed “uniqueness of place” (Beven, 2000), considerably 

limit our ability to develop generalizable hydrological hypotheses (e.g., Wagener et al., 2007). 

Model structure selection has led to multiple research directions, including the search for a single model 120 

structure that achieves good prediction across all catchments (the “fixed” model paradigm), and the search 

for model structures best suited for particular types of environmental conditions (the “flexible” model 

paradigm). Whether in search of a single model or multiple models, model selection necessarily relies on 

a process of model development, comparison, and refinement. Approaches to formalize this process 

include the top-down approach (e.g. Sivapalan et al., 2003), the system identification approach (e.g 125 

Young, 1998), and the method of multiple working hypotheses (e.g., Clark et al., 2011a). These 

approaches are not mutually exclusive, as the idea of comparing different model representations is 

ubiquitous in model development and empirical science in general. 

The process of model development, comparison, and refinement can be facilitated using flexible modeling 

frameworks, which enable hydrologists to hypothesize, implement, and (eventually) test and refine 130 

different model structures. Flexible frameworks have themselves developed along multiple directions. 

For example, GEOframe-NewAge (Formetta et al., 2014), SUMMA (Clark et al., 2015), RAVEN (Craig 
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et al., 2020), and CHM (Marsh et al., 2020) focus on the realm of physically based models; the CAPTAIN 

toolbox (Young et al., 2009) is a general toolkit for time series analysis; machine learning frameworks 

such as scikit-learn (Pedregosa et al., 2011) or PyTorch (Paszke et al., 2019) can be used to construct data 135 

driven models. 

In this paper, we focus on flexible frameworks intended for conceptual hydrological modeling. Many 

frameworks have been developed for such purpose, and offer different degrees of flexibility. For example, 

FUSE (Clark et al., 2008) allows exchanging the components of 4 common models (Sacramento, PRMS, 

TOPMODEL and ARNO/VIC). SUPERFLEX (Fenicia et al., 2011) allows building model structures 140 

from generic elements (reservoirs, lag function and connections). CMF (Kraft et al., 2011), represents the 

model as an abstract network of elements and can be adopted for conceptual models. PERSiST (Futter et 

al., 2014) allows to create semi-distributed bucket-type models and is designed to be coupled with a water 

quality model. ECHSE (Kneis, 2015) is a framework for development of object-based conceptual 

hydrological model engines. MARRMoT (Knoben et al., 2019) provides a unified implementation of 46 145 

existing conceptual models (including GR4J, HBV, and others). 

When discussing any mathematical model, it is relevant to distinguish its conceptual principles from its 

software implementation. For example, common conceptual models, such as GR4J, HBV and 

TOPMODEL, exist in many public and in-house versions and in many computer languages (Excel, R, 

Matlab, Fortran, C, and others). FUSE, to our knowledge, has implementations in Fortran (Clark et al., 150 

2008) and R (Vitolo et al., 2016). SUPERFLEX, besides its original Fortran implementation (Fenicia et 

al., 2011), has also been coded in Matlab (David et al., 2019). 

Ideally, the software implementation of a flexible framework should fulfill its goals, i.e., (1) cover the 

envisioned range of applications (e.g., flexibility, spatial extension, processes representation, etc.), and 

(2) achieve this in a sufficiently “practical” way (i.e., it should not require complicated and abstract setup 155 

procedures to define its configuration).  

For conceptual models, a flexible model framework should arguably cover the following “realms”:  

1. Lumped models; 

2. Distributed setups, including simulation of sub-catchments and flows/processes at internal points; 

3. Substance transport modelling, including water isotopes, pesticides, etc; 160 

4. Ability to reproduce existing models, when necessary.  

A modeling code should also meet certain practical criteria: 
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1. Ease of use, including installation, learning, and operation. Interoperability with external software, 

for example for model calibration and uncertainty analysis, is of obvious relevance because 

hydrological models are often used as parts of larger-scale projects and operations. 165 

2. Ease of modifications and extensions. Even a comprehensive software implementation will 

eventually require extension. For example, a modeling framework intended for streamflow 

simulation may require extension to simulate water chemistry. Another type of modification might 

be a switch to a different numerical implementation better suited for parallel computing, etc. 

3. Computational efficiency. Hydrological model applications, especially including calibration and 170 

uncertainty quantification, may require thousands or even millions of model runs. 

Arguably, these requirements are not collectively fulfilled by available software implementations of 

flexible frameworks. For example, only CMF and ECHSE provide full flexibility in terms of model 

structure selection. In some frameworks, the intended flexibility is obtained by enabling and tuning the 

components of a master structure (e.g. FUSE, PERSiST). The original implementation of SUPERFLEX 175 

in Fortran (Fenicia et al., 2011), used for research case studies though not released publically, also used 

this “master structure” approach. In other flexible frameworks, the user can chose from an extensive 

library of existing model configuration (e.g. MARMMoT). Some flexible frameworks are limited to 

lumped configurations (e.g. FUSE, MARMMoT). Substance transport is currently partially possible with 

PERSiST, by interfacing with additional software. 180 

Clearly, achieving all these objectives simultaneously is challenging, and entails juggling multiple 

obvious and less obvious tradeoffs. For example, the intended flexibility of a framework may come at the 

expense of ease of use, similar to how computer languages have varying degrees of abstraction from the 

hardware behavior. Implementing a practical flexible framework therefore requires careful code design, 

experimentation, and inevitably, some compromises. 185 

This work pursues the flexible framework objectives by building upon the concept of SUPERFLEX 

(Fenicia et al., 2011;Kavetski and Fenicia, 2011;Fenicia et al., 2014;Fenicia et al., 2016). A key attractive 

feature of SUPERFLEX as a modelling concept is the fine “granularity” of model structures it can support, 

which enables systematic and detailed hypothesis testing (Fenicia et al., 2011). For example, the 

hydrologist should have the ability to change the functional form of a single flux expression in one of the 190 

model elements, as well as to change such flux expressions in multiple specific parts of the model. 

The development of the proposed framework capitalizes on the authors’ collective experience in using 

the earlier implementations of SUPERFLEX in a series of empirical case studies over the last decade, 

ranging from lumped model implementations (e.g., Kavetski and Fenicia, 2011;Fenicia et al., 2014), to 

distributed setups (e.g. Fenicia et al., 2016;Dal Molin et al., 2020b), interpretation in the context of 195 
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fieldwork insights (e.g., Wrede et al., 2015), large scale model intercomparisons (e.g., van Esse et al., 

2013), and the inclusion of pesticide/substance transport (e.g. Ammann et al., 2020). These applications 

have highlighted the versatility of SUPERFLEX principles to solve increasingly complex modelling 

problems, and have led to insights into software design and configuration aspects not available in the 

earlier implementations. This study reports on these developments and offers an open source 200 

implementation of SUPERFLEX for use by the hydrological community. 

1.3 Aims 

This work introduces SuperflexPy, an open-source Python software that implements the principles of the 

SUPERFLEX framework for conceptual hydrological model development. Our objectives are as follows: 

1. Present SuperflexPy and its basic building blocks (components): elements, units, nodes, and 205 

network. 

2. Illustrate how SuperflexPy can help hydrologists implement a conceptual model structure at the 

desired level of internal complexity and spatial resolution – including recreating existing models 

or developing new ones. 

3. Provide a broad discussion of how the SuperflexPy contributes to the toolkits available to the 210 

hydrological community, including existing flexible frameworks, in terms of intended scope of 

application, advantages, and limitations. 

The paper is organized as follows: Sect. 2 presents SuperflexPy to the hydrological community; Sect. 3 

illustrates selected applications of the framework including the setup of SUPERFLEX configurations used 

in earlier case studies, as well as how to use SuperflexPy to create new elements; Sect. 4 provides 215 

SuperflexPy implementation details useful for understanding the usage and general potential of the 

framework; Sect. 5 discusses the scope of SuperflexPy, its current limitations, and future developments. 

Finally, Sect. 6 draws the conclusions. 

2 Description of SuperflexPy 

2.1 General organization 220 

The SuperflexPy framework has a hierarchical organization with four nested levels: “element”, “unit”, 

“node”, and “network”, collectively referred as “components”. These components are shown in Figure 1 

and described below: 

1. Element (Figure 1a). This level represents the basic model building blocks and is used to create 

reservoirs, lag functions, and connections. An element can be used to represent an entire 225 
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catchment, or, more commonly, a specific process within the catchment. 

The reservoir element is described mathematically by ordinary differential equations (ODEs):  

 ( )S
d ( ) ( ), ( );

d
t t t

t
=

S g S X θ   (1) 

 ( )Y( ) ( ), ( );t t t=Y g S X θ   (2) 

where S  are the state variables (e.g., water storages, substance concentrations, etc.), X  are the 230 

inputs (e.g., precipitation), Y  are the outputs (e.g., streamflow), and Sg  and Yg  are specified 

constitutive functions (e.g., storage-discharge relationships). In most conceptual models, 

reservoir elements have a single state variable (representing water storage) however multiple 

state variables can be accommodated when necessary (e.g., to represent transport). 

The lag function element is described mathematically by a convolution integral: 235 

 ( ) ( ) ( ) ( ) ( )H H0
; ; d

T
t t t t τ τ τ= ∗ = − ∗∫Y X g θ θX g   (3) 

where *  denotes the convolution operator, X  is the input (e.g., water flux), Hg  is the impulse 

response function, and T  is the time of influence of  Hg  (i.e. the maximum lag). Lag functions 

are used to represent delays due, for example, to routing. 

The connection element joins or splits fluxes from other elements. It has parameters but no 240 

states: 

 ( ) ( )( )C ;t t=Y g X θ   (4) 

where Cg  describes the connectivity between input fluxes and output fluxes, and θ  represents 

connectivity parameters (if any). 

2. Unit (Figure 1b). A unit is a collection of multiple connected elements, and is generally intended 245 

to implement a lumped catchment model. Multiple reservoir and lag function elements within a 

unit can be connected to each other, either directly (one-to-one connections), or using 

connection elements such as splitters and junctions (when a single element is connected to 

multiple elements). Elements can be combined to build a unit, with the only restriction being that 

feedback loops between the elements are not allowed. In technical terms, the overall model 250 

structure must be an acyclic directional graph. This design restriction is motivated by 

computational efficiency reasons, as it enables the numerical solution of elements from upstream 

to downstream. Note that the restriction is not absolute, because it does not preclude feedback 

between the states within a given element. Hence, if feedbacks are deemed necessary, they can 
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handled within an individual element, for example by creating a reservoir element with multiple 255 

storages. 

3. Node (Figure 1c). A node is a collection of multiple units that operate in parallel. In the context 

of distributed models, the node can be used to represent a single catchment and the units can be 

used to represent multiple landscape elements (areas) within the catchment. Each unit within a 

node is characterized by a weight (e.g. representing its area fraction) specified by the modeler. 260 

The weights are used to combine the output fluxes from the units into the total output flux of the 

node. 

4. Network (Figure 1d). A network connects multiple nodes into a tree structure, and is typically 

intended to develop a distributed model that generates predictions at internal sub-catchment 

locations (e.g. to reflect a nested catchment setup). The network routs the fluxes from upstream 265 

nodes (leaves of the tree) to the final downstream node (root of the tree). The routing in the river 

network can be simulated adding delays (lag) to the nodes outputs. 

This hierarchical organization makes the effort required to configure SuperflexPy to a new problem 

proportional to the problem complexity. In particular: 

• Level 1 is sufficient to create single-element models, e.g., a single-reservoir model or a unit 270 

hydrograph model (e.g. Kirchner, 2009); 

• Level 2 is sufficient to create a lumped model structure, such as GR4J (Perrin et al., 2003) or 

Hymod (Boyle, 2001); 

• Level 3 is sufficient create a distributed model that represents spatial heterogeneity but generates 

predictions only at the catchment outlet (e.g. Gao et al., 2014;Nijzink et al., 2016); 275 

• Level 4 is needed only in models that generate predictions at interior points (e.g. Fenicia et al., 

2016;Dal Molin et al., 2020b). 

Examples of SuperflexPy models implemented at Levels 2 and 4 are given later in Sect. 3. 

From a software design prospective, SuperflexPy embraces the object-oriented paradigm (e.g., Meyer, 

1988). All framework components are represented by objects that can operate either alone or together, 280 

interacting with each other and with external libraries (e.g. for calibration) through defined interfaces. 

More details are provided in Sect. 4.2. 

2.2 A simple illustration of SuperflexPy: creating a new model from existing components 

This section illustrates the key steps needed to configure and run a hydrological model using the 

SuperflexPy framework. The illustration presents a distributed model intended to represent a catchment 285 

with 2 HRUs and 3 sub-catchments. The model structure is shown in Figure 1d. Within SuperflexPy, the 
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entire catchment is represented using a network, the sub-catchments are represented using nodes, and the 

HRUs are represented using units. The corresponding SuperflexPy code is shown in Figure 2.  

For this example, an implementation of the necessary elements with SuperflexPy already exists, therefore 

the elements only need to be imported. The case where the model structure requires elements for which 290 

an implementation is not yet available is considered in Sect. 2.3. Even more complex setups are described 

in Sect. 3 and in the online documentation (see code availability section). 

We start by importing the model components required by the model structure, namely the elements 

(LinearReservoir and HalfTriangularLag), unit, node, and network. The numerical solvers 

PegasusPython and ImplicitEulerPython needed to solve the reservoir elements are also 295 

imported (more on this in Sect. 4.3). The import operation is shown in lines 1-7. 

The imported components are then initialized, which entails specifying the model architecture 

(connectivity between model components) and the initial values of parameters and states. The 

initialisation sequence starts from the numerical routines (lines 10-11) and then proceeds from the lowest-

level components (elements) to the highest-level component (network). 300 

In detail: 

L1. Elements are initialized by specifying parameters, states, identifier (id) and, when needed, the 

numerical solver (lines 14-16).  

L2. Units are initialized by specifying the elements that compose them and the identifier (lines 19-20). 

The connectivity between elements is defined by conceptualizing the unit as a succession of layers 305 

that contain the elements. Further examples on this are given in Sect. 3. 

The parameters and states of these elements can be changed after initialization using the methods 

set_parameters and set_states of the containing units. This procedure is shown on line 

23 for the LinearReservoir element. 

L3. Nodes are initialized by specifying the units that compose them, their contribution (weight) to the 310 

node output, the influence area of the node (here, the area of the sub-catchment), and the identifier 

(lines 26-28).  

Within a given node, units operate independently from each other. 

L4. The network is initialized by specifying the nodes that compose it and their connectivity, called 

topography (line 31). The connectivity is defined indicating, for each node, the node 315 

downstream of it. 
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The next step is to set the model inputs and time step. Lines 34-36 show how the inputs are assigned 

directly to the nodes, enabling the model to receive spatially-varying rainfall and PET. The time step is 

set on line 39 (note that variable time steps are also supported, see the documentation). 

The model can now be run by calling the get_output method of the highest-level component, as shown 320 

on line 42. 

2.3 Creating new model components with SuperflexPy 

We now consider the case where the intended model structure has components beyond those already 

available in SuperflexPy. New model components can be created by extending existing SuperflexPy 

components. We anticipate that the SuperflexPy components most likely to require extension are the 325 

elements, where new reservoir constitutive functions may be required for new applications. In contrast, it 

is less likely that unit, node and network functionalities would require extension. 

The extension of existing SuperflexPy elements to create new elements relies on the object-oriented 

paradigm underlying the SuperflexPy software design. The inheritance principle, one of the core concepts 

of the object-oriented paradigm, allows the user to construct new components by “inheriting” most of the 330 

functionalities (methods) from existing classes. Separate implementation is then required only for 

methods where model differences are to be introduced. This approach reduces substantially the amount 

of coding required to introduce a new model component. To this end, SuperflexPy provides a library of 

built-in high-level components that can be easily extended to achieve the desired functionality. 

A detailed example of making use of this design is given in Sect. 3.2, which shows how to implement a 335 

reservoir with a new storage-discharge relationship. 

3 Examples of building hydrological models using SuperflexPy 

This section provides more examples of using SuperflexPy to implement hydrological models, including 

the use of built-in elements and the creation of new elements. We follow a progression from simple to 

complex. Section 3.1 shows  the implementation of model M4, a lumped model built solely from reservoir 340 

elements and used in the original SUPERFLEX case study (Kavetski and Fenicia, 2011). Section 3.2 

shows how to define a new element with a different storage-discharge relationship for one of the reservoirs 

of M4. Section 3.3 shows the implementation of a distributed model from a recent application of 

SUPERFLEX in the Thur catchment (Dal Molin et al., 2020b). Further details and more examples are 

provided in the model documentation (see code availability section). 345 
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3.1 Implementing SUPERFLEX configuration M4 

M4 is a simple lumped model presented in Kavetski and Fenicia (2011). As shown in Figure 3, M4 

comprises two reservoirs connected in series: an “unsaturated” reservoir (UR) intended to represent the 

partitioning of precipitation between evaporation and runoff, and a “fast” reservoir (FR) intended to 

represent subsequent streamflow generation mechanisms.  350 

UR partitions precipitation (UR)P  into a portion that enters the UR storage and eventually evaporates 

through flux (UR)
AE , and a portion (UR)Q  that is directed to the downstream FR reservoir: 

 
(UR)

(UR) (UR) (UR)
A

d
d

S P E Q
t

= − −   (5) 

where: 

 
(UR)

(UR)
(UR)
max

S
S

S =   (6) 355 

  ( )
(UR)

(UR)(UR) (UR)Q P S
β

= ×   (7) 

 
( )

)

(UR)

(

(UR)
(U )

UR

R (UR)

)A P (UR

1 m
E E

m

S

S

+
= ×

+
  (8) 

In equations (6)-(8), (UR)
maxS  and (UR)β  are model parameters. The quantity (UR)m  is used to approximate a 

“smooth” threshold behavior; we typically fix (UR) 0.01m = . 

FR is a power-law reservoir, 360 

 
(FR)

(FR) (FR)d
d

P Q
t

S
= −   (9) 

with the storage-discharge relationship  given by 

 ( )
(FR)

(FR) (FR) (FR)Q k S
α

=   (10) 

where (FR)k  and (FR)α  are model parameters. 

The inflow (FR)P  is given by the outflow from UR, i.e., U(FR) ( R)P Q= . 365 

M4 is a lumped model with multiple elements, and hence can be implemented using SuperflexPy levels 

L1 and L2 (element and unit, see Section 2.1). Figure 4 shows the code needed to implement M4. Similar 

to the model described in Sect. 2.2, the two model elements (UR and FR) are already implemented. Hence, 

the user only needs to import (lines 1-3) and initialize (lines 7-13) the elements together with the numerical 
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routines. Next, the unit that comprises the two reservoirs is imported (line 4) and initialized (line 15). The 370 

input data, namely precipitation and PET time series, are set on line 20. Input data is provided using 

Numpy arrays. The reading of input data (from text file(s), databases, etc.) is done separately from 

SuperflexPy, using any suitable Python library or function. In this case, we use Numpy to read from a 

text file, as shown in lines 17-18. 

The model configuration is then complete – line 23 runs the model with given input data to produce the 375 

model outputs. The outputs contain streamflow time series in the form of Numpy arrays. 

3.2 Changing the equations of the fast reservoir in M4 

Suppose the modeler wishes to modify model M4 by changing the storage-discharge equation of the fast 

reservoir given in equation (10) to a new relationship 

 
( )

(FR)
(FR) (FR)

(FR)
(FR) (FR)

S
Q

k
S b

α

=
+

  (11) 380 

where (FR)k , (FR)α , and (FR)b  are model parameters.  

An element with this storage-discharge relationship has not been implemented in SuperflexPy yet (as of 

version 1.2.0). The following sections give two approaches for creating such an element. 

3.2.1 Standard approach for creating a new reservoir 

The standard approach for creating a new reservoir in SuperflexPy is to define a new class that inherits 385 

most of its functionality (methods) from the class ODEsElement. This operation is illustrated in the 

code snippet in Figure 5. The new class must override the following methods: 

• __init__: constructor of the class. Its main purpose is to call the constructor of the parent class 

(lines 5-6) and to point at the method used to calculate the fluxes, 

here,_fluxes_function_python (see also Sect. 4.3, which shows the benefits of using 390 

Numba-optimized methods for calculating the fluxes); 

• set_input: takes the input fluxes in a predefined order (here, just precipitation) and assigns 

them a key (line 13) that is then used when setting up and solving the model equations; 

• get_output: calls the functionalities implemented by the ODEsElement to solve the element 

equation over the entire simulation (all time steps). Lines 18-20 get the current state of the 395 

reservoir, call the ODE solver, and set the state to the final value. Lines 22-26 get the output flux 

arrays from the numerical approximator (see Sect. 4.3). Line 28 returns a list with the outflow of 

the element (here, the streamflow); 
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• _fluxes_function_python: calculates the fluxes for a given state, inputs, and parameters. 

Line 34 implements the vector version while line 36 implements the scalar version. Both versions 400 

are needed by the numerical approximator. 

The new element NewFastReservoir is now defined and can be used in the “new” version of M4, 

as shown in Sect. 3.1 for the pre-existing element PowerReservoir. The Object-Oriented features of 

Python are very useful here to enable the new class to inherit most of the methods from the base class 

ODEsElement. Otherwise, in addition to the methods listed above, we would have needed to implement 405 

many other methods, e.g., for interfacing with numerical solvers, for setting parameters and states, etc. 

3.2.2 Simplified method for creating a new reservoir  

The same new reservoir element can be implemented in a simpler way by noting that 

NewFastReservoir differs from PowerReservoir solely in the definition of the outflow equation. 

This difference affects only one of the four methods implemented in Figure 5, namely 410 

_fluxes_function_python. A simpler implementation of NewFastReservoir can be 

achieved by making this class inherit directly from class PowerReservoir instead of from class 

ODEsElement. The code in Figure 6 illustrates this approach and implements only the method 

_fluxes_function_python. All other methods are inherited from class PowerReservoir. 

Note that this simplified implementation is a consequence of the required modification being relatively 415 

minor, i.e., a change solely in the constitutive function equation. More complex modifications, such as 

the inclusion/exclusion of input/output fluxes (e.g. inclusion of evapotranspiration into the 

PowerReservoir), would require the standard implementation approach described in Sect. 3.2.1. 

3.3 Implementing a distributed model 

This section illustrates the use of SuperflexPy to implement a distributed hydrological model. The 420 

example follows the procedure illustrated in Sect. 2.2, creating the more realistic model M02, developed 

in Dal Molin et al. (2020b) to provide streamflow predictions at 10 sub-catchments of the Thur catchment 

in Switzerland, see Figure 7a. Each sub-catchment receives its own forcing (precipitation, potential 

evapotranspiration, and temperature). Two HRU types are defined based on geology: consolidated and 

unconsolidated formations (Figure 7b). Both HRU types are characterized by the same model structure, 425 

which is shown in Figure 8 and represents an enhancement of the structure of model M4 with the 

following additions: (1) a “snow” reservoir, WR, which controls the partition of incoming precipitation 

between rainfall and snowfall based on temperature, (2) a lag function between UR and FR, and (3) a 
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“slow” reservoir, SR, which acts in parallel to FR and is controlled by the same equations as FR but with 

different parameter values. 430 

This example represents a higher degree of complexity compared to the previous examples, both in terms 

of lumped model structure used for the HRU types (unit) and in terms of introducing a spatial 

discretization. 

Given the spatial organization of the model, nodes are used to represent sub-catchments and units are 

used to implement HRU types. Note that the sub-catchments may share (one or more) HRU types, which 435 

in SuperflexPy translates into the nodes sharing (one or more) units. The network level is used to connect 

multiple nodes, and enables predictions at internal catchment locations. Figure 10 shows the SuperflexPy 

representation of the spatial organization shown in Figure 7.  

We start by implementing the units. As can be seen in Figure 8, the model structure used to represent the 

HRUs has elements operating in parallel and, therefore, requires the use of connections. Figure 9 shows 440 

how the model structure is “translated” into the SuperflexPy framework. Recall, from Section 2.1, that 

the connection of elements within a unit must correspond to an acyclic directional graph, i.e., it should 

not contain feedback loops. Furthermore, elements can be connected only if they belong to two 

consecutive layers, which implies that “gaps” in the structure must be filled using a transparent element 

(which outputs the same fluxes it receives as inputs). 445 

Comparing Figure 8 with Figure 9, we see how the HRUs structure has been implemented within 

SuperflexPy. The following implementation aspects are noteworthy: 

1. The incoming precipitation is partitioned into rainfall and snowfall. This partitioning is done 

internally in WR. The SuperflexPy implementation of WR, in fact, takes care of two processes: 

(i) partitioning of precipitation into rainfall and snowfall; and (ii) simulation of snow processes 450 

(accumulation and melting). The output of WR is, logically, the sum of rainfall and snowmelt. 

Alternatively, a (new) splitter element could be defined to partition the fluxes between UR 

(rainfall) and WR (snowfall) based on temperature.  

2. WR, as currently implemented, does not receive as input the potential evapotranspiration (PET), 

which is needed by the downstream element UR. The transfer of the PET to the UR, therefore, is 455 

done using the system “upper splitter-upper transparent-upper junction” (Figure 9) that allows to 

bypass the WR. 

3. The parallel part of the structure is composed by two elements on one branch (lag and FR) and 

only one element on the other branch (SR). To satisfy the requirement of not having “gaps” in the 

unit structure, a transparent element (lower transparent) is added after. 460 
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The code to setup this model is listed in Figure 11. As shown in the simplified example in Sect. 2.2, the 

user initializes and connects all model components, proceeding sequentially from the lowest level 

(elements) to the highest level (network). The procedure can be summarized as follows: 

1. Lines 10-29: Initialize the elements needed for the lumped model structures used in the HRUs; 

2. Lines 32-39: Initialize the units used to represent the HRUs, linking all the elements; 465 

3. Lines 42-51: Initialize the nodes used to represent the sub-catchments. Both units are assigned to 

9 nodes; the Mosnang sub-catchment contains a single HRU and hence only a single unit is 

assigned to the corresponding node (line 49). 

4. Lines 54-60: Connect the nodes using a network; the topological structure of the network is defined 

by labeling each node with a unique identifier and specifying the downstream node. 470 

The network runs the nodes from upstream to downstream, collects their outputs, and routes them to the 

outlet. The output of the network is a Python dictionary, with keys given by the node identifiers and values 

given by the list of Numpy arrays representing the output fluxes. 

4 Implementation details of SuperflexPy 

This section presents additional technical details of SuperflexPy. A more detailed description is provided 475 

in the model documentation. 

4.1 Parameters and states 

All SuperflexPy components can have parameters and states. Parameters specify component 

characteristics, whereas states keep track of the component history. States and parameters are set as part 

of initializing the model components, and can be manipulated using get and set methods provided by 480 

the framework at all levels of its hierarchy (see the example in Sect. 2.2). 

The parameters can be either constant or variable in time. Constant parameters represent the most 

common application of hydrological models. Time-variant parameters have been proposed in research 

applications to represent ”deterministic” system variability (e.g. seasonality, Westra et al., 2014) and/or 

“stochastic” system variability (e.g. Reichert and Mieleitner, 2009). 485 

4.2 Modular design following the Object-Oriented paradigm 

As noted in Sect. 2.3, SuperflexPy embraces the object-oriented paradigm (e.g. Meyer, 1988), which is 

widely used in general software and is increasingly adopted in scientific software.  

The object-oriented design provides several advantages in the context of SuperflexPy: 
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• The inheritance principle enables the creation of new classes by extending existing ones. 490 

Inheritance reduces drastically the amount of new code that needs to be generated to implement a 

new model component (an example was provided in Sect. 3.2); 

• Changes to a class (e.g. a component) and the creation of new classes can be carried out in isolation 

from the rest of the code, as long as the interfaces between classes are respected; 

• When creating a model, only the necessary objects need to be initialized and used. This principle 495 

makes the model configuration effort roughly proportional to required model complexity, i.e., 

simple model structures can be constructed from the minimal set of required components. This 

capability avoids the overhead imposed in frameworks where simple model structures are 

explicitly constructed as special cases of more complex model structures. The simpler 

implementation may also reduce computational costs; 500 

• Objects retain their history (states), which can be accessed post-run to undertake model analysis 

and/or subsequent computation; 

• The modular nature of objects facilitates the development and testing of new code. 

These benefits make it easier to achieve clean and maintainable code, which is essential for any practical 

modelling framework. 505 

4.3 Numerical solution of ODEs 

Reservoir elements are described using ordinary differential equations (ODEs), which are typically solved 

using numerical time-stepping approximations. There are many such approximations, e.g. Euler methods, 

Runge-Kutta methods, etc. 

SuperflexPy separates the formulation of model equations from the solution of these equations. More 510 

specifically, flux equations are defined internally in elements (as shown in the example in Sect. 3.2), while 

the numerical method is specified externally (to the element) by defining a so-called “numerical 

approximator”. This separation enables the modeller to select the numerical method without making any 

changes to the model equations.  

SuperflexPy provides two built-in numerical approximators, namely the fixed-step implicit and explicit 515 

Euler methods. The user can implement additional solvers, either by coding them directly or by interfacing 

with external ODEs solvers (e.g. from SciPy).  As detailed in Sect. 4.4, the choice of numerical 

implementation, and its compatibility with optimizing compilers, may have a strong impact on the overall 

computational speed of the model. 
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4.4 Computational efficiency 520 

Computational efficiency is a key requirement of a practical modelling framework. Conceptual 

hydrological models are often used in Monte Carlo uncertainty quantification, which requires 100’s - 

1000’s of model runs (even millions in some cases). Model calibration is another common 

computationally demanding task required by most hydrological models. 

The choice of programming languages inevitably requires a trade-off between computational efficiency 525 

and ease of use. The choice of Python for SuperflexPy was motivated by the attraction of a flexible and 

widely used scripting language in conjunction with two efficient numerical libraries: NumPy (Walt et al., 

2011) and Numba (Lam et al., 2015). Numpy provides highly efficient arrays for vectorized operations 

(i.e. elementwise operations between arrays). Numba provides a “just-in-time compiler” that can be used 

to compile (at runtime) a normal Python method to machine code that interacts efficiently with NumPy 530 

arrays.  

The combined use of Numpy and Numba is extremely effective when solving ODEs, where the method 

loops through a vector to perform element-wise operations. The built-in approaches for solving ODEs are 

compatible with such numerical infrastructure, and therefore enable fast computation times. Note that 

switching to ODEs solvers that do not take advantage of such libraries might dramatically increase the 535 

model runtime.  

Numba offers drastic computational speed ups compared to native Python; our experimentation suggests 

runtime reductions by factors of up to 30. However, a drawback of Numba is the requirement to compile 

the code at runtime. For a lumped model composed of a few reservoirs, the Numba compilation time is 

of the order of a few seconds. Therefore, Numba will outperform Python when the simulation is long (e.g. 540 

100,000 time steps, corresponding to roughly 12 years of hourly data) and/or when the model needs to be 

run a large number of times. For example, calibration to observed data (1000’s of model runs) takes a few 

seconds with the Numba implementation compared to a couple of minutes with native Python execution 

(we here report only the runtime of the model itself, and exclude the runtime of the calibration tool 

procedures; more details on benchmarking in the documentation). 545 

4.5 Ability to represent multiple fluxes and states 

SuperflexPy can operate with multiple fluxes and state variables. In particular, connection elements, units, 

nodes, and the network are designed to deal with an arbitrary large number of fluxes. 

This generality is intended to support the extension of SuperflexPy to model the transport of chemical 

substances contained in the water (e.g., Fenicia et al., 2010;Ammann et al., 2020). Representing fluxes of 550 

chemical substances requires state variables and fluxes in addition to those corresponding to water 
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storages and water fluxes. The calculation of such fluxes also requires additional equations and 

parameters. The available examples in SuperflexPy do not include transport processes. However, the 

framework architecture foresee this need, and has been designed to be readily extended to accommodate 

such processes. For example, elements (e.g. a reservoir) can be created to implement the functionality 555 

required to simulate such fluxes (e.g. specifying the governing equations for substance transport, etc). 

5 Summary and discussion 

5.1 Defining the right complexity for a flexible model implementation 

Achieving the envisaged flexibility of the SUPERFLEX framework in practical software is challenging, 

because flexible modelling functionality may come at the expense of ease of use and computational cost. 560 

The challenge in designing SuperflexPy has been to determine an appropriate level of abstraction for 

typical conceptual model applications. On one hand, high level of mathematical generality and abstraction 

offers the most flexibility, but risks losing a clear hydrological interpretation and may increase user effort 

in customizing the model. On the other hand, a framework that is over-restricted in terms of component 

behaviour may be easy to manage (as the number of modelling options is low), but it may not fulfil the 565 

promise of flexible models and may result in a limited range of application (e.g. limiting to lumped 

configurations only). 

Conceptual models vary significantly in terms of complexity (e.g. from single bucket models to 

distributed models, from modelling streamflow alone to modelling water isotopes and/or other chemicals, 

etc.). In order to accommodate this range of potential model complexity in a flexible and practical way, 570 

we have organized the SuperflexPy software into four hierarchical levels, namely element, unit, node, 

network. As shown in Sect. 2.1 and in the examples of Sect. 3, these levels map to many types of 

conceptual modelling applications, from a single element (e.g. a reservoir), to a lumped model (typically 

composed of several elements, such as a combination of reservoirs), to a composition of lumped models, 

designed to provide prediction at a single outlet (e.g. a catchment with several HRUs, characterized by 575 

lumped models), and eventually to a distributed model capable of making predictions at multiple internal 

sub-catchments. An important outcome of this design choice is that the model configuration effort by the 

user becomes proportional to the required model complexity, so that simple models are much easier to 

configure. 

The flexibility in customizing SuperflexPy elements is enhanced through its Object-Oriented design. As 580 

shown in Section 3.2, new components can be built by inheriting most methods from existing components 

and specifying only the required new features of interest. The potential downsides of using a scripted 

language Python in terms of computational speed are mitigated by the ability to use the Numba package. 
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5.2 Current limitations in model structure specification 

As part of balancing the flexibility, ease of use, and computational performance of SuperflexPy, some 585 

restrictions have been imposed on the connectivity between model components. 

The first restriction is that the elements within the unit must represent an acyclic directional graph, with 

no feedback loops from downstream to upstream elements (Sect. 2.1). This restriction enables the 

numerical solvers to proceed in a single pass from upstream to downstream and improves the 

computational performance of the framework. It also simplifies the specification of its structure. The 590 

restriction on internal model feedbacks is not expected to be overly limiting when developing conceptual 

hydrological models, as the fluxes in these models typically flow only in one direction (e.g. in the model 

M4 the water flows only from UR to FR and not vice versa). An example where internal model feedbacks 

may be required is given by the bidirectional interaction between surface water and groundwater in the 

hyporheic zone, where the direction of the fluxes changes depending on the state of the two components. 595 

Such interactions can still be modelled in SuperflexPy by introducing elements that embed such feedbacks 

internally. For example, the hyporheic zone, can be represented using a two-state reservoir with 

interacting states (e.g., Seibert et al., 2003). In other words, the restriction on model feedbacks applies to 

interactions between elements but not to the internal structure within an element.  

The second restriction regards the topology of a network, which must represent a tree where any given 600 

node can connect and transfer fluxes to only a single downstream node (Sect. 2.1). This requirement is 

met by typical conceptual distributed models, as discussed in the introduction and illustrated in Sect. 3.3. 

However, fully integrated distributed models, such as Parflow or Mike She, do consider mutual 

dependencies between spatial elements, leading for example to 2D or 3D groundwater flows. Such 

configurations are considered beyond the scope of conceptual distributed models, and therefore are 605 

currently not supported in SuperflexPy. 

5.3 Current usage and future developments 

SuperflexPy is easy to install and run; it is written in pure Python and its dependencies are limited to the 

packages NumPy and Numba (Sect. 4.4). Installation can be done directly using the package installer for 

Python (pip) without the need of installing external libraries. We stress that SuperflexPy is not a wrapper 610 

of earlier SUPERFLEX code but offers a completely new implementation that is not constrained by 

choices taken in the earlier code versions. 

SuperflexPy has already been used for research applications. Jansen et al. (2020) performed a “model 

mimicry” study where similarities and differences within the HBV “family” models were investigated. 

SuperflexPy was used to construct a compare a set of HBV-like models, assessing, among other things, 615 
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the behavior of single components and the impact of numerical implementation. A list of publications 

using SuperflexPy is maintained on the documentation website. 

In terms of future developments, we hope that SuperflexPy offers the hydrological community a new tool 

for research work and practical applications. Further SuperflexPy developments are likely to follow from 

such work and collaborations, including: (1) expansion of the library of model components beyond the 620 

ones here presented (as shown in the example in Sect. 3.2), and (2) more fundamental changes in response 

to future model applications. It is important to highlight that SuperflexPy can be used to create and 

combine new model components, thereby enabling experimentation with new model structures and 

general conceptualizations. The framework, therefore, is not limited to components and structures taken 

from existing models. Such collection, however, may be produced by storing the configurations that allow 625 

reproducing such models. The model documentation already contains a small sample of such 

configurations, which may grow as new users share their implementations with the community. In order 

to facilitate the use of the code, the code is accessible on GitHub with license LGPL-3.0 and distributed 

using the Python package installer PyPI (refer to the section at the end of the paper on code availability). 

The documentation provides a guide on how interested colleagues can contribute to the framework. 630 

6 Conclusions 

SuperflexPy is a new Python flexible modelling framework for building conceptual models ranging from 

lumped to distributed configurations. The framework offers detailed control over each aspect of model 

configuration, and caters to a wide range of typical conceptual model applications. In order to facilitate 

the model building process, the framework is organized using four hierarchical levels, namely element, 635 

unit, node and network, which correspond to conceptual model setups of increasing levels of complexity, 

namely a single element (e.g. a reservoir), a lumped model (e.g. a collection of interconnected reservoirs), 

a collections of lumped models designed to provide prediction at a single outlet, and a distributed model 

designed to provide predictions at internal sub-catchments. As the construction of a model that requires a 

certain hierarchical level does not require specifying the levels above it, the model configuration effort is 640 

proportional to the complexity of the application. The framework supports multiple states and fluxes in 

each component, and foresees an extension to water quality applications. 

SuperflexPy builds on the experience of the authors and their colleagues in a series of hydrological case 

studies using the SUPERFLEX principles. SuperflexPy offers an open source implementation of the 

SUPERFLEX principles. In order to facilitate usability and further developments, we focused on several 645 

aspects of the model code, including ease of use and interfacing, availability, amenability of extensions, 

and computational efficiency.  
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We presented two examples illustrating common use cases of the SuperflexPy framework, including the 

implementation of a simple lumped reservoir model, and the implementation of a distributed model to 

represent a system of multiple sub-catchments and HRUs. It is hoped that the framework will contribute 650 

to ongoing efforts in the hydrological modelling community to develop more robust and representative 

models. The framework is open source, available with license LGPL-3.0 on GitHub. 

Code availability 

The organization of SuperflexPy as a software project is shown in Figure 12. The public GitHub 

repository contains all the source code of the framework, as well as examples and documentation. Package 655 

releases are distributed using the Python package index (https://pypi.org/project/superflexpy/). Releases 

are identified using a version number based on Semantic Versioning 2.0.0 (this paper refers to version 

1.2.0) and assigned a DOI (Dal Molin et al. (2020a) for the release associated with this paper) through 

Zenodo. Documentation (https://superflexpy.readthedocs.io) and examples are updated periodically, and 

made available through Read the Docs and Binder respectively. 660 

SuperflexPy is implemented using Python 3.7 and depends on NumPy (version used 1.19) and Numba 

(version used 0.50); compatibility with future versions will be assured through future releases of 

SuperflexPy. 

SuperflexPy is available under the license LGPL-3.0. Users of the framework are invited to share their 

modelling solutions with the community by contributing to the GitHub repository. 665 
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Figures 

 835 

Figure 1. Four basic components of SuperflexPy. (a) Elements (e.g. reservoirs, lags, connections) are 
used to represent specific processes; (b) Units connect multiple elements and are intended to implement 
lumped catchment models; (c) Nodes collect multiple units that operate in parallel representing different 
landscape elements within a catchment; (d) Network connects multiple nodes and is used to represent 
distributed setups. 840 
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Figure 2. Code implementing the model in Figure 1d. 
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Figure 3. Schematic of model M4 used in the original SUPERFLEX case studies of Kavetski and Fenicia 
(2011). 
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Figure 4. Code implementing model M4 in Figure 3. 
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Figure 5. Standard method for implementing a new reservoir element NewFastReservoir by 855 
extending the class ODEsElement. 
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Figure 6. Simplified code implementing the NewFastReservoir. 
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Figure 7. Illustration of a distributed application of SuperflexPy: (a) subdivision of the Thur catchment 865 
into sub-catchments and (b) hydrological response units (HRUs) as presented in model M02 in Dal Molin 
et al. (2020b). The panels of the figure were originally published in figures 1a and 6 of Dal Molin et al. 
(2020b). 
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 870 

Figure 8. Model structure used to represent the HRUs in model M02 in Dal Molin et al. (2020b). 
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Figure 9. Translation to SuperflexPy of the model structure M02 presented in Figure 8. 
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Figure 10.  Spatial organization of the SuperflexPy model configuration used to simulate water fluxes in 
the Thur catchment (M02 inDal Molin et al., 2020b). The units, used to represent the HRUs, are shown 880 
using the blue and yellow boxes. The nodes, used to represent the sub-catchments, are shown using the 
green dashed boxes. The group of nodes connected together (green arrows) creates a network.  
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Figure 11. Code implementing the distributed model in Figure 9 and Figure 10. 885 
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Figure 12: Organization of the SuperflexPy project. 
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